
Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

Table of

Introduction ...4 2

Whitepaper Roadmap...5 3

API Economy ...5 4

Oracle Economy ...6 4.1

Operational Cost...6 4.2

Oracle Revenue and Profit...6 5

EARTHPool Revenue..7 6

Solution Architecture..9 6.1

On-Chain Contracts..9 6.1.1

Dependencies..10 6.1.2

Upgrades...10 6.1.3

Trust-less Solution...13 6.1.4

Token Distribution ...14 6.2

Contract Test Suites...15 6.2.1

EARTHPool...15 6.2.2

Pool Owners...16 6.3

Infrastructure..17 6.3.1

Scalability ...17 6.3.2

Reliability...17 6.3.3

Security ..18 6.4

Technical Roadmap..19 6.4.1

Define AWS in Terraform...19 6.4.2

Contract Refactor...19 6.4.3

Real-Time Monitoring ...19 6.4.4

Continuous Integration ...20 7

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

Introduction

The AMM (Automated Market Maker) protocol we are launching is a decisive DEX protocol

that has now brought the Decentralized Finance (DeFi) market to the general public. Simply

put, AMM is a protocol that supports immediate swapping between tokens by replacing the

existing buy/sell orderbook structure with a Liquidity Pools created on- chain by liquidity

providers.

Looking at representative DEX examples like Uniswap, an Ethereum-based AMM protocol

currently hosting around $2.7B USD in liquidity pools, it is clear that plentiful liquidity is

needed to boost the Decentralized Finance ecosystem as a whole by allowing easy transactions.

For this reason, ozys, the developers of EARTHswap, created a high liquidity environment in

which assets not only of the Ethereum network but also of other networks.

We even take it a step further than Uniswap by ensuring significant trade volume by using a

transparent to offer yield farming with asset pairings previously unconnected in the

decentralized world. We’ll touch upon more of that later.

Website: https://earthswapfinance.github.io/

Twitter: https://twitter.com/earthswapfinan1

WHITEPAPER ROADMAP

In this whitepaper, we review the API economy and the profitability of running a Earthswap Oracle.

We will describe and review the on-chain mechanisms EarthPool uses to provide trust-less staking and

token distribution. Finally, give a high-level design of the EarthPool service, detailing how the service

is architectured and how it mitigates the problem statements defined in the introduction. All of the

information in this whitepaper has been written to the current alpha specification of EarthPool. Any

area is subject to change within development which could invalidate details in this whitepaper. 3 API

ECONOMY API’s (Application Programming Interfaces) have quickly become new focus areas within

the digital space, providing vehicles of transformation within many sectors globally. For example, an

API directory called ProgrammableWeb currently has over 19,428 API’s listed, having adding over

5,900 API’s between 2014-2017 alone (2). The increase in these API’s are from a new initiative for

businesses to open up their internal functions and data, potentially monetizing them. Opening up API’s

encourages businesses and developers to build on-top of these API’s, allowing for new apps, websites

and internal systems to be more collaborative and information-rich. This initiative has led to new

business models, allowing new API marketplaces to aggregate these data sources and to monetise

them, encouraging more use by defining standard API specifications and easy inter-connectivity

between different data sources. For example, one of these marketplaces RapidAPI recently announced

that they’re serving over 400 Billion API calls each month. The API economy has been forecasted to

generate over $2.2 trillion in the next 10 years. (3). Earthswap’s aim is to create a decentralised API

marketplace, allowing developers and businesses who seek to use blockchain technology to buy

external data provided by a network of oracles, creating an API economy specifically tailored to the

https://earthswapfinance.github.io/
https://twitter.com/earthswapfinan1

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

Blockchain. EarthPool is aiming to provide numerous Earthswap oracles, helping deliver its API

economy while supporting its decentralised mechanisms

ORACLE ECONOMY

To provide incentive for node operators to be part of the network, each node operator will be paid in

LINK tokens for each data request or job that they serve (4). This incentive alone creates the economy

for oracles, providing a revenue stream that will encourage more oracle providers to join the network

and facilitate more data requests. To display the sustainability and feasibility of the oracle economy

within Earthswap, we have broken down the estimated potential operational cost and revenue based

on a fraction of the RapidAPI marketplace usage (0.001%), which results in 4 million requests a month.

We deem 0.001% of the throughput of RapidAPI a conservative estimate and would expect to see

substantial factors of growth based on adoption. All of the examples are calculated in USD. The reason

for this is that we envisage the cost of data retrieval will be tied to the relative FIAT value, rather than

an amount of LINK. Therefore, we speculate that the amount an oracle will generate in revenue will

always be tied to the amount of requests that the network undertakes, rather than the LINK token

value. Although, any historic income generated on an oracle is paid in LINK, so it will fluctuate in value

based on the token price volatility. 4.1 OPERATIONAL COST For the purpose of this example, we will

not be including the operational cost of the hardware involved to run a Earthswap oracle as it is widely

varied based on approach. This example just includes the cost for an oracle to retrieve public data and

write it back to the Blockchain. There will be two events when during a jobs life-cycle where an oracle

needs to pay GAS, these are:

• The transfer of LINK penalties to the order matching contract (if applicable and subject to change).

• The writing of the data on-chain for data aggregation.

The GAS costs of these operations are unknown as they’re yet to be released and tested. Although,

for the purpose of the examples, we will use the average GAS cost of an ERC-20 token transfer

increased by 30%. That results in 35,000 GAS (5). We will also be assuming that each job that the oracle

is accepting is also requiring the oracle operator to put forward a penalty payment, meaning both on-

chain operational costs will always be included in the examples specified in this whitepaper.

Altogether, this results in a GAS cost of roughly 70,000. Which in the current market climate at a price

of 1 Gwei, equalling in a price of $0.02744 (6). 4.2 ORACLE REVENUE AND PROFIT For an oracle to

ensure that it generates profit, a node operator can define a minimum price in LINK for any data

request they serve. This minimum price doesn’t limit the amount of revenue they may earn, rather

sets a safeguard to ensure that any individual data request is profitable for the oracle provider. For

the purpose of these examples, we will be using a minimum price of $0.05488 per request, providing

a 100% margin on the data request that has been served. In addition, due to the decentralised nature

of Earthswap, multiple nodes will facilitate each data request. For the purpose of this example, I will

use four nodes for each request as an average. To accurately estimate the potential revenue of each

individual node, the amount of oracles on the network needs to be known. Since the network isn’t yet

currently available, I will refer to the 19,000 oracle providers that registered interest with the

Earthswap team (7). To now breakdown this example using the variables defined: Total Requests per

Node: (4,000,000 *4) / 19,000 = 842 Revenue per Node: 842 * 0.05488 = $46.20896 Operational Cost

per Node: 842 * 0.02744 = $23.10448 Profit per Month per Node: 46.20896 - 23.10448 = $23.10448

Figure 1 - Breakdown of Revenue/Profit based on 0.001% of RapidAPI Usage Although, there are some

important points to consider in regards to the example:

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

 • GAS costs fluctuate based on Ethereum network usage, operation of cost can suddenly rise and

node operators need to take that into account in their defined minimum price.

• Due to the nature of on-chain contracts and the frequency in which they are likely to be called, we

think the amounts of calls per unique user will be lower than any traditional API usage in existing

systems.

• The requests are always presumed to be paid at minimum price. Any high value contracts will most

likely use more nodes and pay more for the requested data. This is a critical point, as very few of the

requests will be at minimum price.

• Off-chain computation is an item in the technical roadmap within the Earthswap whitepaper. Once

this is implemented, it will drastically reduce operational costs within the network. (1)

• This is with the assumption that the 19,000 node count will all be within the same reputation

provider on the Earthswap network. 5 LINKPOOL REVENUE With the practical example specified in

section 4, we can take the result to then calculate an example revenue generated to the owners,

contributors and stakers. In the BETA registration phase of EarthPool, interested parties specified an

amount of LINK tokens they would be looking to stake into the platform. By knowing the amount of

tokens are of interest in being staked on-to the platform, we can estimate how many nodes we will

be operating, allowing us to then calculate expected revenue amounts. During the 75 day window

registrations were open, we generated staking interest of: 13,969,252.36 Earth.

EarthPool Generated Staking Interest For the purpose of this example, we will be rounding that up to

14 million LINK tokens. To calculate how many nodes we will be running, we need to understand the

staking limit of each node which the EarthPool service runs. The optimum amount of LINK before

diminishing returns on a single node is still largely unknown and will most likely change during

operation of the network ongo live. For the purpose of this example, we will set the staking limit of

each node to 20,000 LINK. To now calculate the amount of nodes we will be running based on the 14

million tokens, simply divide the token amount by the staking limit: Number of Nodes: 14,000,000 /

20,000 = 700 Figure 3 - Total Number of Oracles based on Staking Interest To now calculate potential

earnings of the EarthPool platform, with the share of 75/25 to stakers/owners and using the example

in section 4: EarthPool Service Profit: 700 * 23.10448 = $16,173.136 Distributed to Stakers: 16173.136

* 0.75 = $12,129.852 Distributed to Owners: 16173.136 * 0.25 = $4,043.284 Figure 4 - EarthPool

Service SOLUTION ARCHITECTURE From this section onwards, the on-chain mechanisms for staking

and the high-level-design of the EarthPool service is going to be broken down, defining the current

approach and items that are on our technical road-map to be completed after the crowd-sale. 6.1 ON-

CHAIN CONTRACTS For the LinkPool platform to work as a trust-less staking mechanism for the

Earthswap network, onchain contracts have been designed to ensure ownership, fair token

distribution and node management. To provide a table of the contracts built to support the Earthswap

platform: Contract Name Functionality EarthPool Entry point for node-creation within the contract

suite, getters for the information residing within PoolStorage instances for each node; providing

abstraction for any changes within storage instances for node data. Node Main area of functionality

for any given node, provides: stake limit adjustment, withdrawal, token distribution, node status

management, makers percentage adjustments and penalty amount tracking. NodeFactory Provides

the logic for creating new node instances within the contract suite. NodeStaking Entry-point for

stakers entering the EarthPool platform. Adds stakes to any given node. PoolOwners Contract the

makers fees get transferred to. Provides token distribution mechanism for the owners of EarthPool.

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

PoolStorage Getter, setters and deletion methods for all needed data types within the contract suite.

PoolStorageFactory Contract to create and store all the PoolStorage addresses for the pool and nodes.

Figure 5 - LinkPool Contracts and Functionality The main focus of the contract design was to allow

each node to work independently rather than acting as one single entity within the Earthswap network.

In result, there is a far higher potential income per each node as requests aren’t shared divided within

the pool. In the scope of this white-paper, each contract won’t be explained in detail of each method

due to it all being subject to change during development. Although, the process of contract upgrades

and the dependency tree will be; in addition to the areas of focus and improvement within the current

suite of contracts. All of the EarthPool contracts will be made open-source prior to launch, and any

questions sent to the team around the structure and design of them will be answered.

Dependencies To show the dependency tree of each contract within the platform: Figure 6 -

EarthPool Contract Dependency Tree Due to the nature of Solidity, contract interfaces are used for

each dependency. This allows for only the method signatures to be imported into any contract which

needs it as a dependency, rather than importing the full contract including method bodies. This is

due to a variety of reasons: • A non-interface contract import creates a new instance of the contract

being imported. • Due to each import being a new instance, it then drastically increases GAS usage,

blocking deployment of the larger contracts which have multiple dependencies. • Redundant

imports that wouldn’t use the imported method bodies, rather only using method signatures that

refer to a contract address outside of the imported contract. 6.1.2 Upgrades The ability to upgrade

the EarthPool contracts without re-mapping any of the data inside the contracts to the new

instances is a critical requirement. Due to the immutability of Blockchains in general, this adds extra

effort into correctly designing and implementing as you can’t upgrade/edit an already deployed

contract. Without taking this into consideration, it would make upgrading of the contracts prone to

high-severity bugs and would incur a significantly high cost. If you refer to Figure 6, it shows every

contract has a dependency on both the PoolStorageFactory and the PoolStorage instances. This is

due to all the data being set/retrieved/deleted is completely abstracted away from the contracts

which store the logic that manage that data. This abstraction allows for a clean upgrade of the logic

which manages the EarthPool platform. When an upgrade of the contract instances that contract

business logic is required, this can be done in isolation without effecting/re-mapping any of the data

already existing for any node or the pool itself.

To demonstrate the flow of this action: Figure 7 - Node Contract Upgrade Flow From referring to the

above figure, there are only two actions being done on a contract upgrade. This is the deployment

on the new contract, then providing ownership of the PoolStorage instance to the new contract just

deployed. This results in the new version of the node contract having permission to set/delete the

data in the existing PoolStorage instance for the node address of X, without touching any of the

existing data on the deployment of the new contract. 6.1.2.1 Upgrade Design Issues Even though a

lot of design decisions have been made around the ability to upgrade contracts without affecting the

data, and that has been achieved, there are some issues within the contract suite which are yet to

be addressed and are mandatory prior to launch: • Contract addresses are passed into constructors

for each contract which needs the address of a contract instance. This breaks the upgrade approach,

as even though a new version of the contract would work within its own scope, there’s still variables

within other contracts which store the address of the old contract instance. They would have to be

re-deployed for the upgrade process to work, increasing cost. • PoolStorageFactory contains hard-

coded addresses of all the PoolStorage address instance for the pool and each node address. This

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

contract is designed to be un-upgradeable and limits the potential scope of upgrade. For example, if

new contracts are designed in the contract and are then needed to be stored within

PoolStorageFactory, that contract has to stay unchanged which then blocks that upgrade. With the

above points being rectified, it allows full upgradability in the contracts, being able to deploy new

instances of each contract individually, without then having to re-deploy existing instances of

contracts with variable changes.

Example: Withdrawing a Stake Below is an example method from the Node contract, which allows a

staker to withdraw any amount of their token balance: // Withdraw a stake from a node function

withdrawStake(address nodeAddress, uint256 amount) nodeExists(nodeAddress) public { // Get the

nodes storage PoolStorageInterface nodeStorage =

PoolStorageInterface(getStorageInstance(nodeAddress)); // Does the staker have enough? uint256

stake = nodeStorage.getUint(keccak256(msg.sender)); require(stake >= amount); // Get variables we

need int256 currentStakes = nodeStorage.getInt(keccak256("node.currentStakes")); uint256

amountStaked = nodeStorage.getUint(keccak256("node.amountStaked")); // Reduce the total

amount staked and staked amount nodeStorage.setUint(keccak256("node.amountStaked"),

SafeMath.sub(amountStaked, amount)); nodeStorage.setUint(keccak256(msg.sender),

SafeMath.sub(stake, amount)); // Redude amount of stakes if stakers balance is 0 if

(SafeMath.sub(amountStaked, amount) == 0)

{ nodeStorage.setInt(keccak256("node.currentStakes"), currentStakes - 1); } // Approve the

withdrawal in the storage nodeStorage.approveWithdrawal(erc677, amount);

require(erc677.transferFrom(nodeStorage, msg.sender, amount) == true); // Done.. Fire

Withdrawal(nodeAddress, msg.sender, amount); } Figure 8 - Withdraw Stake Contract Method To

run through the example code block, the method has two parameters nodeAddress and amount

specified. The nodeAddress is the Ethereum wallet address of the LinkPool service node, and

amount is the amount of LINK tokens in wei that is being withdrawn.

The nodeExists modifier verifies that the node address that has been passed in is an existing node by

ensuring that it has an instance of PoolStorageInterface associated to that wallet address. To start on

the method body, getStorageInstance is an internal method call to get the PoolStorage instance

through the PoolStorageFactory contract. The PoolStorageFactory contract has a mapping array which

contains the addresses of the node wallets with each instance of PoolStorage, when this is called, it

simply returns the address of the PoolStorage instance. Once it has the storage instance, it can firstly

verify that the amount of LINK that the staker has on the node is greater than or equal to the amount

they’re withdrawing. If it passes that assertion, then it can fetch all the required variables from that

storage instance, including the current amount of active stakes on the node and the total amount

staked on the node. After the method has received the data it needs for that node, it then modifies

the total amount staked on the node, subtracting the amount being withdrawn from the total. It then

also subtracts the amount the staker is withdrawing from their own balance. Once updated, the

contract then checks if they’ve fully withdrawn from the node and if so, reduced the current amount

of stakers on the node by one. After the internal management of data of the node has been updated,

a request is sent to the NodeStorage instance for that node to approve the withdrawal amount it has

just been received. The approve Withdrawal method only allows the owners of that storage instance

to approve any withdrawals, with consists of: Node, NodeStaking and NodeFactory. Once the approval

is completed, the transferFrom ERC20 token method is called from the ERC677 token address,

transferring the LINK tokens from the NodeStorage instance, to the stakers wallet. Depending on the

result of that transfer, then the Solidity event Withdrawal is fired with the information of the

withdrawal just processed. These notations and storage patterns are common throughout the

EarthPool suite as this provides the upgradable contract design as specified in this whitepaper. 6.1.3

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

Trust-less Solution Security and the integrity of EarthPool is paramount, and with the on-chain

contracts now being trustless, it allows us to safely secure the LINK tokens within a contract that

retains ownership to the address of the staker rather than transferring ownership to the node. 6.1.3.1

Earthswap Integration To realise this solution, the contracts we’ve developed have to integrate with

the Earthswap contracts that aggregate each node. After discussions with Earthswap, we’re pre-

emptively designing our solution to be able integrate cleanly upon its release. Although, it is possible

that the design decisions were taking may be effected by any changes upon further development of

the on-chain contracts for Earthswap. Firstly, we will be creating PoolStorage instances in a way that

they will act as a proxy for each node we have on the network, storing each nodes token balance. Due

to each PoolStorage instance being an individual contract, they each have an Ethereum address,

allowing each node address to be mapped to the address of the PoolStorage instance. Due to this

mapping, we can successfully trace each nodes staked tokens through each stage of the lifecycle of a

job, fully retaining ownership. With that in mind, we can now use the address of the PoolStorage

instance as the address of the node within the Earthswap network. So once we start adding our nodes

to reputation providers within Earthswap, our on-chain contracts represent our nodes (like a proxy).

Our nodes will then subsequently monitor whether they’ve received any jobs by monitoring its

respective PoolStorage address, fulfilling any job that it gets selected for. 6.1.3.2 Token Security As

explained above, the tokens themselves are stored in the PoolStorage instance of each node. When a

staker enters or adds more tokens to their stake, the tokens get transferred directly to this contract

with data entries stating which addresses have staked with each amount. So even though the tokens

are technically stored in one address for each node, the contract holds the exact amount each staker

address holds of that staked amount.

Due to penalties needing to be transferred for the accepting of jobs that require them, tokens will

need to be transferred from this contract to the relevant destination address. This creates an issue, as

there still needs to be a mechanism for the EarthPool service to be able to initiate a transfer of these

tokens. If that mechanism wasn’t correctly designed by us, it means that the owners of the contract

(EarthPool), would still be able to transfer tokens to any address it desires, breaking the trust-less

solution. We have mitigated this issue by designing the contract to only transfer LINK tokens to the

Earthswap network contracts that require penalty payments, creating a whitelist approach. As an

extra security step, we will be looking at enforcing contract detection within the address whitelist. For

example, if the address being added to the whitelist isn’t a contract that resides within Earthswap, it

won’t allow it to be added to the white-list. That results in a full trust-less solution, as token ownership

is retained and the owners can’t maliciously transfer any tokens out of the pool. Due to the public

transparency of on-chain contracts, the whitelist will be publicly retrievable, allowing any concerned

party to audit the addresses that are allowed transfer. 6.1.4 Token Distribution The token distribution

within EarthPool and the Owners contracts distribute tokens to the stakers and owners by

proportionate distribution. This means that token distribution is performed by calculating the

percentage of the staker or owner within the contract and then distributing the right amount of tokens

based on the operational profit and the percentage. The calculation of this is as follows: S = Staked

Amount T = Total Staked on a Node O = Operational Profit D = Token Distribution D = S/T * O Although,

due to Solidity and the uint256 value being the lowest common demonstrator, there’s no concept on

decimals within the wei unit. This concept blocks easily implementing percentages, as there’s no easy

way to calculate the percentage of the token amount within a pool. To alleviate this issue, we use a

mechanism which is similar to parts per notation, moving a decimal point to correctly be able to

calculate percentage of units (8). Unfortunately, these mechanisms increase gas costs within the

contract along with needing to loop through the stakers to correctly calculate the token distribution

amounts at any given time. The mechanism to distribute tokens can be triggered by anyone, not just

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

the owners. As EarthPool, we will be running scheduled tasks which distribute tokens, but it’s also

possible to the stakers themselves to trigger this action. To calculate the operational profit, we need

to always set the rate of operational cost in the contract based on our mark-up as explained in section

4.1. For example, if we set the cost of a data request at double the gas price of facilitating, then the

contract will have a 50% operational cost stored inside. The contract would then deduct that amount

on token distribution, leaving the rest to be divided up between the owners and the stakers. Due to

the operational cost being calculated by the minimum price, any request which is executed over the

minimum price will mean operational profit will reside in the operational cost as any requests over

the minimum price results in a higher mark-up. Any token profit generated from the operational cost

will be transferred to the owner’s contract to be distributed fairly between the contributors and

owners. To stay competitive in the market, we are planning to be able to update this on the fly

between nodes and the contract, always making sure the two are sync’d. This will allow us to

dynamically update our minimum price in the market allowing us to stay competitive and securing the

number of requests we could receive. 6.2 CONTRACT TEST SUITES 6.2.1 EarthPool The contract suite

is built in the Truffle framework, enabling the ability to easily implement integration tests against the

EarthPool contract suite. For EarthPool, we’ve created a suite of end-toend tests covering all major

“happy-paths” of the contract suite. It also includes negative testing scenarios. There’s also the more

unit-test like distribution shares tests that focuses on the exact precision of token share distribution,

going up to 7 decimal places all with different proportionate ownership amounts. The current progress

on the EarthPool test suite as of writing is shown below (refer to the test case names for supported

functionality): Figure 9 - Current EarthPool Test Suite

Pool Owners Due to the share sale for EarthPool, the PoolOwners contract instance will be deployed

separately to the main EarthPool contract suite. With it being deployed prior to the EarthPool

contracts, it resides in its own repository and has its own test suite. The test suite for PoolOwners

covers all life-cycles of the share sale including contribution of ETH and setting the percentage share;

contribution up until the hard-cap being hit; distribution of tokens and the withdrawing of tokens

between owners and contributors. Figure 10 - EarthPool Owners Test Suite

INFRASTRUCTURE

Our infrastructure is what is powering the EarthPool service: providing a high-availability,

highlyscalable network of Earthswap nodes that is future-proofed and will be able to stand the test of

time. All the decisions being made around our network have security, scalability and reliability at the

core. We’re proud to be using the latest and greatest in dev-ops technologies to power this network,

leading the way in-terms of node operation and support. The scope of this section is to detail the

decisions we’ve made which provide security, scalability and reliability and why we feel that what we

will offer will pave the way. 6.3.1 Scalability Due to running on Amazon’s AWS cloud platform, there

is a mass of tools and different approaches we can take to designing EarthPool, all providing similar

results. The decision we made to easily scale the EarthPool nodes is by using Amazon Elastic Container

Service. ECS is a managed container service, it provides a highly configurable and flexible way to run

Docker containers within AWS (9). ECS consists of three main layers: clusters, services, tasks. A cluster

is made up of one or many services and each service consists of one or many instances of a given task.

To put this into practise into EarthPool, we have a Nodes cluster, which then contains the services of

Node-A, Node-B with each one of those services containing one or multiple node instances. Although,

using ECS by default has some issues. Due to the containerisation, there is no concept of stateful

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

storage beyond the mounting points of the EC2 hosts the containers run on. This would mean that if

a container is upgraded and in result is moved to a new EC2 instance, the previous state of the node

including its database and wallet store would be lost. To make sure our nodes are stateful, we’ve

implemented a custom Elastic File Storage wrapper upon container start-up. By using EFS, we can have

the benefits of having unlimited high-performance NFS storage which employs encryption yet is highly

available across all regions and availability zones. The way our wrapper provides a state is by detecting

the ECS service name of the current container by querying AWS API’s. It then mounts the EFS volume

for that ECS service within the Docker containers, using that volume mount as the data storage

location for the node within the service. With this solution, creating a node within EarthPool is as easy

as sending one API call to the AWS API’s, creating a new service which will then start-up the Docker

containers; automatically adding itself to the EarthPool contracts upon boot based on whether the

ECS service name is newly created. 6.3.2 Reliability Due to ECS being a managed service, the Docker

containers are consistently monitored and any down-time is managed automatically by the service.

For example, if for any reason a Docker container within the ECS service went down, it would be

recognised instantly and then recovered by the ECS service. This creates complete autonomous

management and recovery of our containers. Even if the host itself went down in-which a container

runs on, ECS would also recognise this and then transfer that container to either an empty host, or

create a new host to recover that container if there is none free. ECS will also manage this across

availability zones. For example, in EarthPool we are using all three availability zones within us-east-1

and if anyone of those availability zones were hit with downtime, ECS would manage that by moving

the failed containers over availability zones automatically.

By using this solution, we can be confident that our service will always available even in the event of

any unexpected crashes within containers. Although due to the block time of Ethereum, we are not

prioritising running two instances of each Earthswap node within a single EarthPool node as it would

provide no benefit without off-chain computation. Our reasoning for this is because of a high chance

of corrupting the data of any given node, as there is currently no real way of implementing full

replication and clustering of Bolt databases as it’s a key-value store. There’s also no concept of running

a master and slave node, meaning both nodes would have to be available at any given time,

duplicating data fulfilment requests, using the same database and resulting in general confliction.

With off-chain computation not taking the Ethereum block time into account, any second of node

downtime including the process of container recovery may incur in penalties. With that in mind, upon

the build-up to off-chain computation, being able to run two of the same nodes will be of upmost

priority. This isn’t a concern with on-chain computation, as any node will have recovered from any

downtime by time of the next block. 6.3.3 Security One of the benefits of AWS is the ease of security

implementation. By having easily defined security groups, we can completely manage and audit the

communications between all services within the network, ensuring only the services which need to

communicate actually can. The EarthPool network is only accessible in AWS via a VPN. The VPN forces

2FA authentication for all users and is restricted by IP of only to the owners of EarthPool. There is no

publically accessible service within the EarthPool network other than the public webservers

(linkpool.io) and there is no inter-communication between public and private servers. Every EarthPool

node is not accessible through public internet, including our parity nodes. SSH access is restricted to

only the VPN server, and there is no SSH access between each instance on the network. For example,

if a SSH session was granted on to a Earthswap node, there is then no ability to also SSH onto other

nodes or a parity instance. All instances on the network implement SSH key access only, and these

keys are stored only on encrypted hard-disks that are password protected. In addition to the steps

we’re taking, it’s also worth noting that the Earthswap network will not have any visibility of IP

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

addresses of the nodes in the network. The nodes themselves are always tied by their Ethereum

address as defined in section 6.1.3.1. Even if an IP of a EarthPool node was somehow discovered, any

port scanning of that IP would yield no results. There is no external facing communication to that or

any of the servers within the network.

TECHNICAL ROADMAP

We’ve got a long list of features we want to implement before and after the Earthswap network

releases. These features are to improve collaboration, real-time monitoring and automation within

the platform by creating services which aren’t business critical but add a lot of value. 6.4.1 Define AWS

in Terraform Even though the current implementation uses Amazon ECS and is easily scalable, there’s

still room for improvement within the defined implementation in section 6.3.1, rectified by defining

our infrastructure in code within Terraform. For those unfamiliar with Terraform, it provides a

descriptive language to define infrastructure in code; allowing you to then automatically plan and

deploy your infrastructure changes (10). By using Terraform, it allows us to easy create, modify and

destroy AWS infrastructure by using a series of terraform command-line utilities with the current state

of the network being stored persistently in S3. To compliment Terraform, we will utilise Jenkins

(Continuous Integration Platform) to automate the deployment of infrastructure. 6.4.2 Contract

Refactor As stated in section 6.1.2.1, there are some improvement points in regards to upgrading of

the contracts within the suite. We will be looking to mitigate this issue by changing the way the

addresses of the contracts in each contract is stored. To ensure that we don’t need to deploy a new

version of each contract on change, we will store all the addresses of contracts within

PoolStorageFactory and its own PoolStorage instance. If contract addresses are retrieved from this

instance on each method call, it provides a single point of maintenance for the storage of contract

addresses. In practise, it means any single contract deployed can be replaced individually without

disrupting the function of the network. When a migration script is ran, it will deploy the new instance

of which ever contract is being upgraded. Once then deployed, it will retrieve the PoolStorage instance

of PoolStorageFactory and for example, set the contract.Node variable to the new address of the Node

contract. The migration will then add the new address as the owner to each PoolStorage of the nodes

and finally remove the old address as owner. Allowing only one contract to be deployed on upgrade.

6.4.3 Real-Time Monitoring We believe that the more data we extract out of EarthPool, the better.

This is why we’re planning to develop a real-time monitoring solution blending together Grafana and

Prometheus. By using these two technologies, we can centrally monitor any metrics we extract in

centrally managed dashboards. Some of the metrics we’re planning to include are: • Hardware Usage

(CPU, RAM, Disk, Network) • Tokens generated per each node in real-time • Amount of tokens locked

within penalties • Assignments currently in progress • Assignments completed • Reputation Statistics

• Breakdown of Assignment Types and API Usage By including all of these metrics in real-time, we will

be able have an extensively detailed and constant understanding of the performance of the platform.

We will also be investigating the viability of making these dashboards public, as we feel it is crucial to

both the contributors and stakers to be able to watch the platform in real-time. Whether it is made

public is based on security considerations. 6.4.4 Continuous Integration The automation of the

Earthswap platform is absolutely vital in a couple of aspects. For example, due to functionality like

penalty transfer, assignment bidding and transferring earnings on to nodes all being manual processes

(at this stage), we need to automate this so the service is self-sufficient. The technology we’ll be using

Author: Earth Swap Finance Team April 7, 2021 2 TABLE OF CONTENTS

for this is Jenkins which is an open-source continuous integration platform. We will be automating the

jobs we create within Jenkins by using their Groovy DSL language in pipelines stored within GIT. This

includes:

• Creating new nodes once there is none available

• Ensuring enough ETH is on each node/server to suffice any transactions

• Managing the transfer and deposit of penalty payments into contracts

 • Withdrawal of operational income from any completed jobs

• Distribution of tokens to stakers (if needed)

• Infrastructure deployments and management The automation of the platform will always reside

within the boundaries of the VPN and not be made public.

